Relaxation of wheat cultivar release requirements

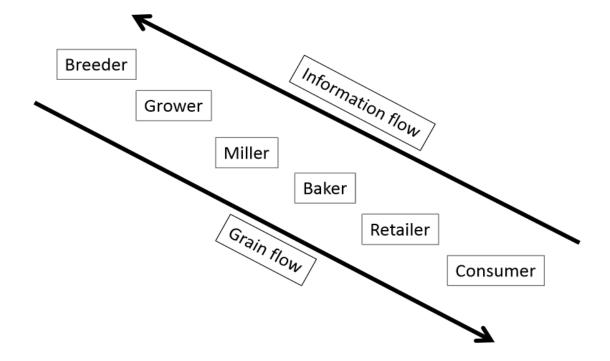
Dr Francois Koekemoer

Sensako

SA WHEAT INDUSTRY

fppt.com

SA WHEAT INDUSTRY


Goals to be addressed during the talk

- Explain the role of the wheat breeder to obtain results
- Evaluate SA quality release system
- Benchmark SA quality with international quality brands
- Indicate shortfalls and propose alternatives
- Breeders perspective of wheat quality and food security

NDUSTRY

L

Wheat quality means different things for each role player in the value chain

- The breeder must also understand the impact of the production environment has on quality
- Types of quality possible in an environment

5

NDUSTR

- The impact of Genotype x Environment interaction
- The annual regional variability
- Influence on breeding and selection

fppt.com

Influences on wheat quality

• Know your environment

NDUSTR

Ц

- Climatic effects (rainfall and temperature)
- · Soil effects (fertility, pH, toxicities, deficiencies)
- Biological effects (Stresses, viruses, insects, pathogens, etc.)

Environmental influences on wheat quality

- Change in WRA environment last 3 years
- Variation in localities

NDUSTR

11

- Need to have reference when evaluating quality performance
- Do we need to breed for stronger quality, permanent tendency

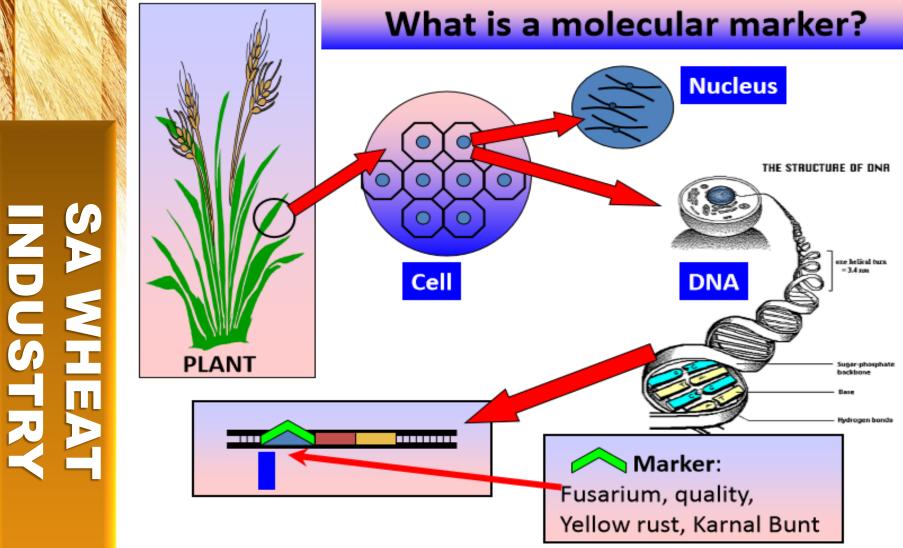
	1998-1999	2012
MDT	3.31	1.79
AS	53.5	21.5

Data for Kariega

Early Hitting the target Mid stage 100's of generations, lines 1000's of lines The target, one line, one variety Late stage 10's of lines

SA WHEAT

Hitting the target


Must have the ability to test for quality in :

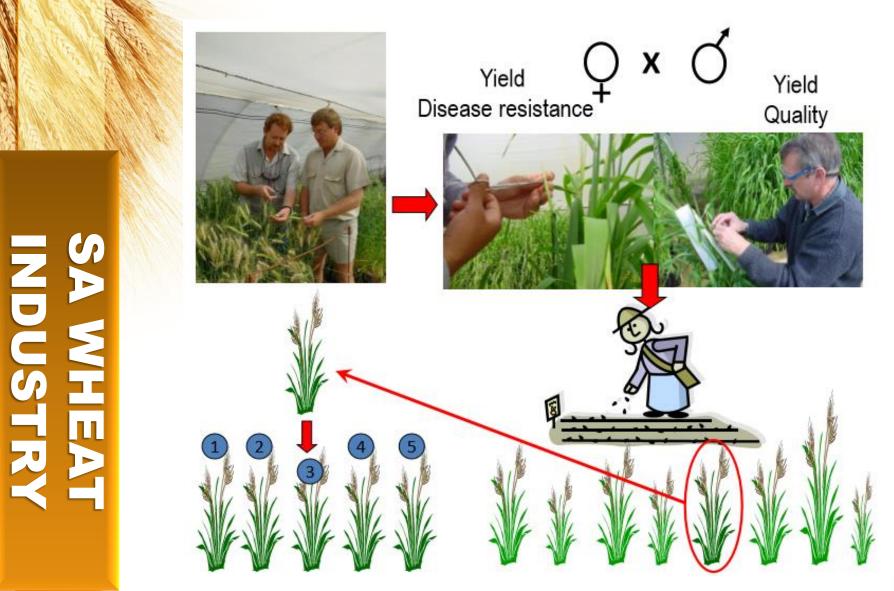
- · Early generations, rapid, small scale
- Mid generations, still predictive tests

NDUSTR

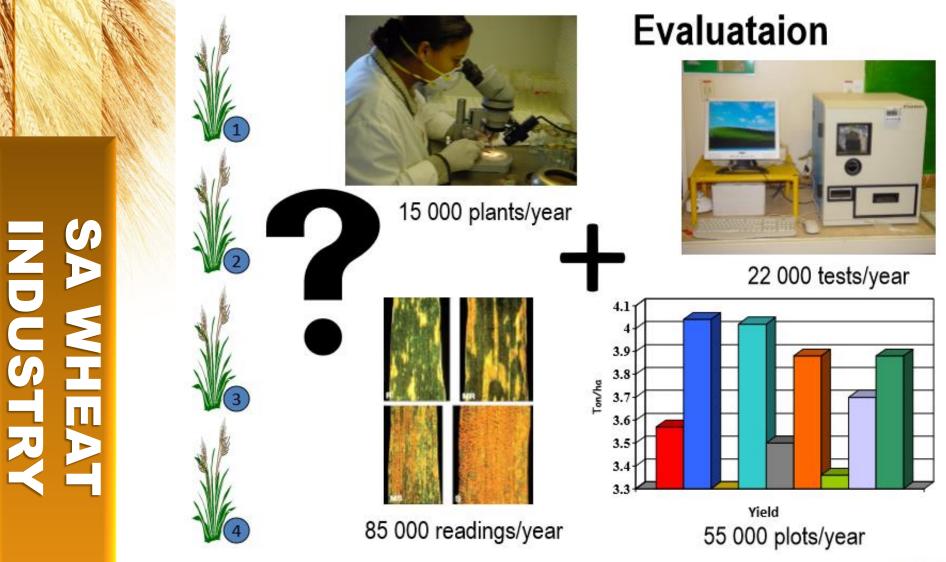
Ц

Final stages, full end product testing

.pp.....m


Breeding for quality

Early generation quality tests:

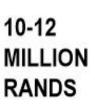

Simple

SA WHEAT

- Rapid, high daily throughput
- Correlated with and predictive of end-use performance (medium to high h²)
- Cost effective

fppt.com

fppt.com


- Plots = 14 253 = 99 Km = 50 Ha
- Single rows = 30 945 = 186 km = 83 Ha
- Amount of crosses = 2 650

SA WHEAT

Role of the wheat breeder NEW CULTIVAR

8-12 years

SA WHEAT

RSA, cultivar release system

Wheat technical committee

NDUSTR

- · Biological standard, min and max values for characteristics
- · Biol Std commercial cultivar, good agronomical and quality
- Two years 5 localities = provisional release
- Three years 5 localities = final release
- Cultivar purity 95% pure, seed and SDS-Page
- Colour standardized at 76% (0.4 KJ units/1% FLY)
- Bread volume standardized at 12% protein (40cm³ per 1%).

Milling and baking worth project

- Unique set of data over years and localities for same cultivars
- Cultivars
- Years
- Localities
- Quality traits, milling HLM, TKM, VK, FABS, BFLY, FCL (C76), FLY
- Quality traits, baking FLN. GPC, FPC, MDT, AS, AD, ASTAB, P/L, LFV-12%

fppt.com

SA WHEAT

Variance components irrigation

Source	HLM	ткм	SKC S-G	SKC S-DIA	νк	SKC S-HI	FABS	BFLY	FLY
Genotype	16.22	8.57	6.09	30.36	1.07	24.53	43.15	54.25	24.25
Genotype x years	1.99	13.78	18.47	7.14	10.70	16.78	0.00	0.43	14.67
Genotype x localities	3.11	0.00	0.00	0.00	9.16	3.97	0.97	0.00	0.00
Genotype x localities x years	18.98	17.24	21.20	8.93	3.61	17.69	28.04	27.62	29.59
Error	59.70	60.40	54.24	53.57	75.45	37.02	27.70	17.78	31.22
Total	100.00	100.00	100.00	100.00	100.00	100.00	99.86	100.08	99.73

	FLN	GPC	FPC	WGC-12	SDSS	MDT	AS	AD	ASTAB	P/L	LFV
Genotype	2.17	10.50	1.08	33.40	43.67	57.65	45.22	31.74	44.29	31.90	0.70
Genotype x years	6.06	13.17	10.81	5.43	6.13	2.52	8.68	0.00	3.15	3.68	11.66
Genotype x localities	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Source	30.64	4.90	11.89	7.09	16.15	21.90	10.16	21.92	24.79	36.81	22.29
Error	61.13	71.43	76.22	54.08	34.05	17.92	35.94	46.35	27.77	27.61	65.35
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Variance components Winter Rainfall Area (WRA)

s	iource	HLM	ткм	SKC S-G	SKC S- DIA	νк	SKCS- HI	FABS	FLY	FCL
G	Genotype	0.00	18.57	16.83	22.22	-5.69	18.46	34.70	6.65	2.06
G	enotype x years	16.04	9.37	-5.20	5.56	20.41	61.41	0.00	0.00	0.31
G	enotype x localities	6.33	0.00	-6.10	0.00	-6.46	0.00	0.00	0.00	0.00
G	enotype x localities x years	42.22	35.24	48.76	47.22	61.11	12.41	42.99	38.35	0.00
E	Error	35.41	36.82	45.71	25.00	30.63	7.72	22.31	4.18	87.55
т	otal	100.00	100.00	100.00	100.00	100.00	100.00	100.00	49.18	89.92

Source	FLN	GPC	FPC	WGC- 12	MDT	AS	AD	ASTAB	P/L	LFV
Genotype	36.72	8.13	5.14	14.58	3.42	37.41	17.47	23.29	38.24	3.76
Genotype x years	-6.42	-6.71	-3.01	-6.09	15.09	4.70	3.21	-0.51	7.00	4.30
Genotype x localities	-7.88	10.16	24.47	9.82	9.05	-0.11	7.19	1.71	29.17	-1.19
Genotype x localities x years	33.93	38.11	33.88	42.61	18.11	20.73	32.73	7.55	-2.69	40.33
Error	43.65	50.31	39.52	39.08	54.33	37.25	39.40	67.96	28.28	52.81
Total	100.00	100.00	100.00	100.00	100.00	99.98	100.00	100.00	100.00	100.01

Variance components dry land

Source	HLM	ткм	SKCS- G	SKCS- DIA	νк	SKCS- HI	FABS	BFLY	FLY	FCL
Genotype	27.60	40.93	32.66	36.13	4.01	48.48	36.63	51.92	43.70	11.59
Genotype x years	15.73	6.68	8.66	12.61	13.07	1.69	0.00	0.00	0.00	0.82
Genotype x localities	6.83	0.21	6.37	8.40	0.00	4.99	17.31	0.00	0.00	0.00
Genotype x localities x years	31.73	33.46	31.40	16.39	20.63	16.54	30.01	9.41	38.35	0.00
Error	18.11	18.73	20.92	26.47	62.89	27.94	16.06	38.70	17.95	87.66
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00

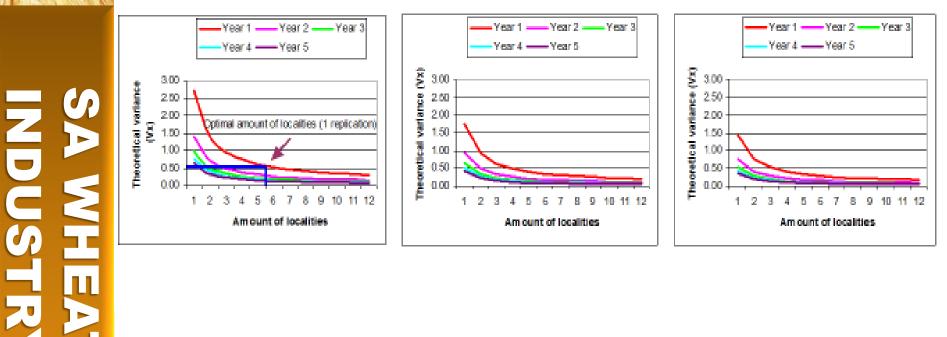
Source	FLN	GPC	FPC	WGC- 12	SDSS	MDT	AS	AD	ASTAB	P/L	LFV
Genotype	0.00	10.41	13.10	21.98	50.69	58.94	57.13	46.60	78.95	76.98	8.74
Genotype x years	10.84	-3.98	-4.65	-2.55	5.02	2.04	-1.42	3.49	-0.47	-0.69	4.32
Genotype x localities	14.83	2.58	0.51	0.77	2.08	3.39	-0.59	0.77	-2.62	0.64	3.55
Genotype x localities x years	9.04	25.79	14.61	19.56	10.73	11.63	14.41	19.90	13.63	5.77	25.53
Егтог	65.29	65.20	76.44	60.25	31.48	24.00	30.48	29.24	10.51	17.30	57.86
Total	100.00	100.00	100.01	100.01	100.00	100.00	100.01	100.00	100.00	100.00	100.00

SAGL Procedure Milling characteristics

			HLM	TKM	FABS	BFLY	FLY	FCL
Area	Tol	Std	(kg/hl)	(g)	(%)	(%)	(%)	(C76)
Current	min		-1.5		-2	-5	-1.2	
			(-1.8)		(-2.5)		(-1.8)	
	max			4	2	5		0.5
					-2.5			1.0
Irrigation	min	SST806	-1.8		-2.4	-3	-1.1	
	max			4	2.4	3		1.5
WRA	min	SST027	-1.9		-2.9		-1.6	
	max			1.6	2.9			1.5
Dry	min	Elands	-1.8		-2.5	-2	-1.7	
	max			4.9	2.5	2		0.6

NDUSTR

fppt.com


SAGL Procedure Baking characteristics

			FLN	GPC	MDT	AS	AD	ASTAB	P/L	LFV(12)
Area	Tol	Std	(s)	(%)	(min)	(cm²)	(mm)	(mm)		(CM ³)
Current	min		-15	-1	-10,-5, - 25	-20	-10	-10 (-20)	-20 (-25)	-10
	max				35, 45,15	20	20	20	20 (25)	
Irrigation	min	SST806	-22	-1	-20	-29	-18	-14	-39	-4
	max				-10	29	18	20	39	
WRA	min	SST027	-5	-1.4	-15	-15	-18	-13	-17	-15
	max				15	15	18	13	17	
Dry	min	Elands	-16	-1	-14	-15	-15	-13	-20	-6
	max				14	15	15	13	20	

INDUSTRY

fppt.com

SAGL PROCEDURE – STD BAKING

Amount of localities irrigation

Amount of years	Amount of replicates	HLM	ткм	VK	BFLY	FLY	Total
1	1	6	6	8	6	5	6
2	1	3	2	3	3	2	3

Amount of years	Amount of replicates	FLN	GPC	MDT	ASTAB	AS	AD	P/L	LFV12	Total
1	1	7	6	6	7	5	6	7	6	7
2	1	3	2	3	3	2	3	3	3	3

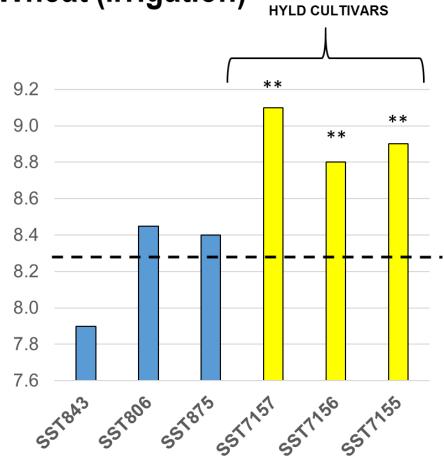
Improvement in quality traits since 2000

	Dryland	Irrigation	WRA
SKCS-HI	-7 units	-5 units	15 units
FLY	2.1%	2.6%	2.0%
FCL	0.8 units	1.2 units	0.8 units
FABS	4.6%	2.3%	0.6%
MDT	-1.8min	-0.1min	0.8min
AS	-26.5cm ²	3.2cm ²	10.2cm ²
AD	-62.5cm	12cm	2.6cm
ASTAB	-78.9cm	-1.8cm	13.5cm
P/L	-1.4	0	0,3
LFV	62cm ³	33cm ³	50m ³

SA WHEAT

Selection procedure for high yield

Amount of lines


High Yield Wheat (irrigation)

Evaluation Objectives

- 10 20% Yield advantage over top SA bread wheat cultivars with lower emphasis on quality.
- Adaptability and stability
- Improved plant physiology
- Adaptation to SA conditions
- Straw strength

NDUSTR

- Disease resistance
 - Bacterial blight
 - Rust
 - Powdery mildew
 - Fusarium

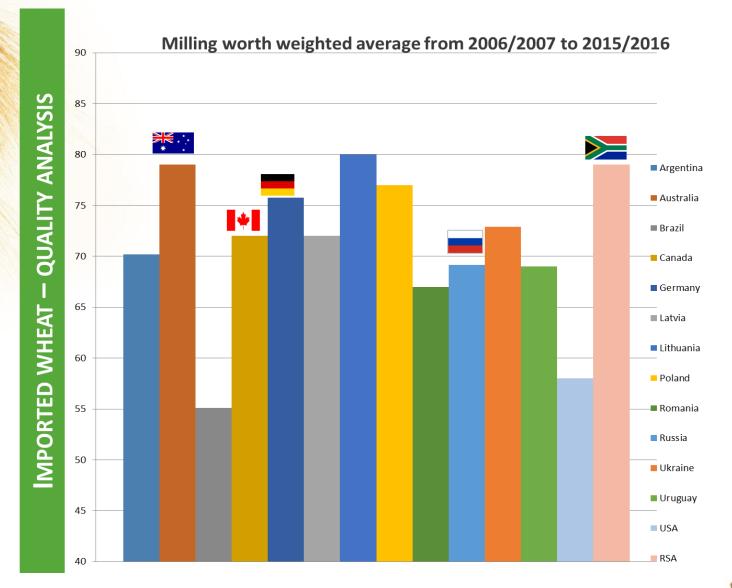
S INDUSTRY LL

	Bühler	Colour	Mixo		Farino			Alveo				BakingT	
		Colour						/				Built	
	EX	KJ	PT	ABS	ABS	DT	STAB	STR	STAB	DIST	P/L	VOL	EVAL
High yield	76.1	-3.2	2.4	60.8	59.9	5.1	8.3	27.6	62.4	114.8	0.6	920	0
Germany	75.6	-1.3	3.4	59.8	60.5	1.9	4.0	33.3	106.0	54.0	2.0	729	3
Australia	74.5	-2.6	2.8	61.2	61.9	3.9	8.7	49.5	112.0	89.0	1.3	833	2
		2.0		0112	0 110	0.0	0.1					000	
Argentina	74.5	-2.1	3.0	61.6	61.2	3.9	9.2	45.3	98.0	94.0	1.1	908	1

- Relaxed criteria SAGL for high yielding material was implemented
- Most high yielding lines, although better quality than imported wheat, do not meet the relaxed criteria

 Need to reconsider system if want to make progress in this regard

Wheat classes in RSA


- Bread wheat class
- Soft wheat class
- Durum wheat class
- · Class other

G

NDUSTR

Wheat classes internationally

- USA, various classes
- Canada, various classes
- Australia various classes
- UK, various classes
- France, various classes
- Germany various classes

NDUSTR

fppt.com

Baking worth weighted average from 2006/2007 to

2015/2016 ÷ 90 85 Argentina Australia 80 Brazil 75 📜 Canada Germany 70 Latvia 65 🔳 Lithuania * Poland 60 Romania 55 Russia Ukraine 50 Uruguay 45 USA RSA 40

SA WHEAT

- Before regulation in 1997 South African quality similar to Argentinean and Kazakhstan quality
- In less than 13 year breeders improved quality to similar and even higher levels than that of Australian, Canadian and American wheat
- Wheat quality over the last decade spot on with demand from industry
- Thus breeding for quality survived the oven
- In spite of progress wheat quality and yield, hectares are the lowest in the history of wheat production in South Africa
- Biggest reason profitability due to price

 Wheat breeding is long tem investment, with current trend must breeding programmes still invest?

 With current population growth and future shortages of wheat in the near future can the processing industry afford to loose wheat breeding programmes?

NDUSTR

A WH

LL

- End Point Royalty system (EPR) managed by SACTA implemented 2017
- Will increase income of Farm Saved Seed (FSS), only producers contribute currently
- Will enable breeding programmes to afford better equipment, tools, infrastructure and participate with international expertise
- Should benefit wheat industry in the whole, look at Australia a leading wheat producing country as an example

NDUSTR

• Want to make plea to processing industry to re-consider their stance on EPR

SA WHEAT

The cultivar * SST843 has a unique genotype differ from Australia, Mexico (CYMMIT) and other SA germplasms.

Contain 3 major genes initiating the earlier start of tillering and flowering

Plants from the cultivar SST843 and five pedigree related breeding lines showed greater tolerance to drought

Based on experiments in hydroponics, the SST843 genotype can be deemed the most salt tolerant compared to all other studied

The highest level of Aox1 expression in the leaves of SST843 under salt stressed conditions

Summary and conclusions

 RSA self sufficient, solutions must be find to improve wheat production

S

МH

Ц

NDUSTR

- Establish different wheat classes instead of only one bread wheat class (dual purpose)
- Develop cultivars similar than imported wheat to enable farmers to produce local wheat locally
- This wheat must be high yielding and identifiable

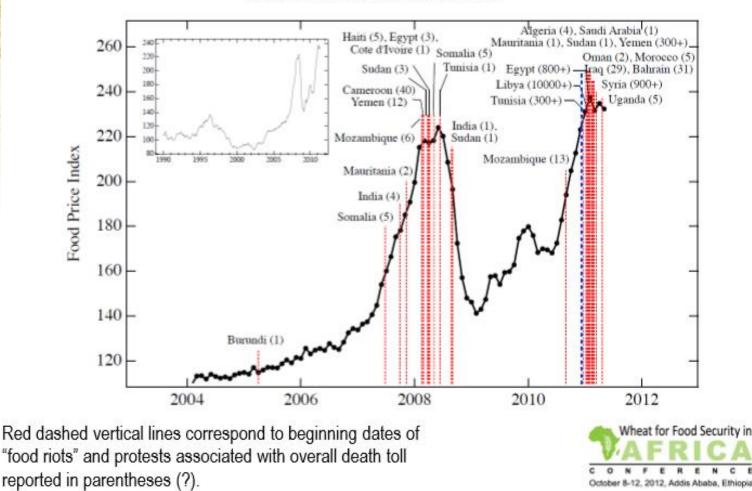
Food for thought

Global Food Security

Borlaug's 1969 Prophecy

S

NDUSTR


"The seriousness or magnitude of the world food problem should not be underestimated. Recent success in expanding wheat, rice and maize production in Asian countries offers the possibility of buying 20-30 years of time" N.E. Borlaug, 1969 – A Green Revolution Yields a Golden Harvest

Food for thought

Global Food Security

Food Prices and Social Unrest

S NDUSTR

October 8-12, 2012, Addis Ababa, Ethiopia

Take pride in how far you've come and have faith in how far you can go