

Concrete Bin Failures and Why Prepared for: GEAPS Exchange 2016

Arthur D. Moeller, PE

Moeller Engineering, LLC

Topics

- AG INFRASTRUCTURE FACTS
- AG INDUSTRY LOSSES
- CONCRETE SILO ENGINEERING
 - REASONS FOR FAILURE
 - THE INSPECTION
 - RESTORATION PLAN DEVELOPMENT AND EXECUTION
- SILO INSPECTIONS/MAINTENANCE

SILO CONSTRUCTION THROUGHOUT THE 1950'S

JUST THE FACTS...

- THROUGH THE 1950'S
 - 3 BILLION BU STORAGE ADDED (5.5 BILLION TOTAL)
 - TODAY'S STORAGE, 10.7 BILLION BU, OFF-FARM COMMERCIAL
- AGING INFRASTRUCTURE
 - MORE THAN HALF GREATER THAN 50 YRS
 - ESTIMATED 75,000 CONCRETE SILOS, JUST DURING THAT DECADE AND EARLIER
 - 20% OF TODAY'S TOTAL STORAGE

RUSSELL, KS, JUNE 25, 2010 STRUCTURAL FAILURE, COLLAPSE

constructed mid 1950's

WHY THE DECISION TO DEMO?

NOVEMBER 20, 2012 - SILO COLLAPSE OAKLEY, KS

OWNER DECIDED TO REBUILD

APRIL 13, 2010 GRAIN DUST EXPLOSION

BUILT 2004

- 1. STRUCTURAL EVALUATION
- 2. CONSTRUCTION COST EVALUATION
- 3. OWNER DECIDED TO REPAIR

OHIO SILO EXPLOSION, OCT. 2014

CONSTRUCTED 2007

2014 CONCRETE SILO FAILURE

FACILITY REBUILT

ASSESS YOUR CONCRETE STRUCTURES-

ARE YOU ON THAT GREATER THAN 50 LIST?

Concrete Silo Construction

- Concrete (Not cement!)-Portland cement, fine aggregate, coarse aggregate and water
- Steel Reinforcing Bar "Rebar"
- Qualified Contractor
 - Inspection

Gradient Pressure Theory

EXCHANGE 2016 CONCRETE CONSTRUCTION TODAY

While Inspecting, look for cracking

Cracking is an indication of structural deficiencies of the concrete wall

Look for these signs of problems:

- Cracking
 - Spider
 - H-cracking
- Surface distress
 - Spalling
 - Scaling

What is causing the cracks?

- 1. Lack of rebar
- 2. Wearing of aging equipment
- 3. Drying and shrinkage
- 4. Thermal Stresses
- 5. Weathering
- 6. Corrosion of Reinforcement
- 7. Poor Construction Practices
- 8. Errors in design and detailing

-How much use (CYCLING)?

SPALLING CONCRETE EXPOSED REBAR, CONCERNED?

SPALLING AND DETERIORATION

WELL DEFINED CRACKS...

Define these Cracks.

"H" Cracks

Look carefully

Crack concerns?

Crack concerns?

INSPECT THESE KEY SILO COMPONENTS:

- Foundation
- Roof: look for shifting with respect to the silo walls (walking) and curb cracks
- Interior silo walls
- Silo sidewall openings interior
- Exterior silo walls
- Silo sidewall openings exterior
- Tunnels Top and sides

What can be done? Liner?

THE ENGINEERING BEHIND IT

MOELLER ENGINEERING Grain Bin Load Calculator Bin and Commodity Specifications

Ziriana commonly opcomonations							
24	ft	Diameter of bin					
110	ft	Height of bin					
4	in	Thickness of Liner					
3500	psi	Strength of Liner					
0.5	in	Size of Bar (Diameter)					
6	in	Vertical Spacing of Bars					
60000	psi	Yield Strength of Rebar					
1.5		Overpressure coefficient (1.35 - 2.00)					
0.58		Coefficient of friction	CHART				
38	-	Emptying angle of repose	CHART				
23	-	Filling angle of repose	CHART				
49	Iblft 3	Density of commodity	CHART				

If eccentric loading and/or unloading is occurring

12 // Distance from center of bin to eccentric loading/unloading point

Calculated Values

	0.033	in^2	Area of steel per inch of height
	0.299		k; Ratio of internal lateral pressure to vertical pressure
	11.280	psi	Vertical pressure
	3.374	psi	Lateral Static pressure
	5.904	psi	Lateral Design Pressure
	25,980	ksi	Hoop Stress
	36,000	ksi	Allowable Stress in Rebar Provided
			Hoop Stress Check
			OK
	0.080	As	Min. Area of Steel Check
			OK
	0.008	AslAg	Temp. and Shrinkage Check
			∩K

LINER DESIGN PLAN AND SECTION

RECOMMENDATIONS

PREVENTATIVE MAINTENANCE PROGRAM

- REGULARLY SCHEDULED ENGINEERING INSPECTIONS
- SURFACE TREATMENTS
- REGULAR VISUAL EVALUATIONS BY PERSONNEL
- CONDITION SURVEY LOG
 - CRACK MONITORING

SUGGESTED REPAIRS (PROTECT THE REBAR!)

- INTERIOR LINERS
- SPALL REPAIR
- CRACK PATCH

Be aware of your surroundings

EXCHANGE 2016

