Yield estimate in the operational Crop Monitoring System And The contribution of Sen2Agri products (10m NDVI & LAI)

> W. Durand & D.L. du Toit May 2017

Yield estimation currently done in the operational crop monitoring system

	AREA		Y	IELD	N	PROD	UCTION
A line	NCSC: PICES Telephonic (subject survey	tive)	N Objec	CSC: tive yield		S. (end o	AGIS f season)
B line	DAFF		Crop- (IDS	Modelling SS-YES)		SA	NSOR
C line	Agric Risk Specialists DPO Fertiliser	Companies	Financial Institutions	Agbiz-Srain		PDAS	Traders/ Reports

Objective Yield Survey

Maize

Three Provinces:

- Mpumalanga (April)
- Free State
- (May)
- North West
- (May)

700 Fields

Use 20 Numerators

Wheat

Two Provinces:

- Western Cape (September)
- Free State (October to November)

660 Fields

Use 15 Numerators

The objective of the NCSC is to determine the yield of a **Province** not a field !

Objective Yield Survey – Steps - Maize

Rapped Assessment Method

- First Point of Entrance
 - Walk random number of Steps along the Field Walk random number of of Steps in to the Field
- Record the GPS Coordinates
- Measure the Row Width
- Measure 10 Meters along a row
- Count the number of Ears over 10 m
- Count the number of Plants over 10m

Rapped Assessment Method

Maize at Physiological Maturity:

- Harvest the AVG Ear (11 Ears)
- Count the Kernel Rows
- Count The Kernels per Row
- Place Ear in Plastic Bag
- Mark Plastic Bag
- GPS Number
- Point Number

Measure:

- Moisture Percentage (< 30%)
- Grain Mass

Rapped Assessment Method

Maize before Maturity:

- Harvest the AVG Ear (11 Ears)
- Count the Kernel Rows
- Count The Kernels per Row
- Harvest average kernel
- Compare to chart
- GPS Number
- Point Number

0.19 g	0.20 g	0.21 g	0.22 g	0.23 g	0.24 g
2 2 2	330	000	000	000	000
0.25 g	0.26 g	0.27 g	0.28 g	0.29 g	0.30 g
110	0.00	000	000	000	000
0.31 g	0.32 g	0.33 g	0.34 g	0.35 g	0.36 g
000	000	000	0000		000
0.37 g	0.38 g	0.39 g	0.40 g	0.41 g	0.42 g
100	2)0	000	000	010	000

0.19 g	0.20 g	0.21 g	0.22 g	0.23 g	0.24 g
200	000	ان 🔍 🍐	ال. ال	000	000
0.25 g	0.26 g	0.27 g	0.28 g	0.29 g	0.30 g
800	000	000	900		000
0.31 g	0.32 g	0.33 g	0.34 g	0.35 g	0.36 g
000		933	ال ال	۵ ۵ (000
0.37 g	0.38 g	0.39 g	0.40 g	0.41 g	0.42 g
000	200	000	000	000	000

After the Survey

- After survey data gets quality checked (human error).
- Formulas applied to calculate yield.
- Summarized to provincial level.
- Results are passed on to Crop Estimates Committee.

Methodology also suitable to establish own yield for field/farm

Yield estimates using a crop model

- Crop models in some or other form have always been part of the maize crop estimates system.
- The initiative to use crop models for large area estimates was started in 1982/83 by evaluating the South African PUTU model and the CERES-maize model (De Vos and Mallett, 1987).
- Since 1995 the CERES maize model has been used for drought monitoring and forecasting of maize yields in the Free State Province (van den Berg and Potgieter, 1997; van den Berg and Manley, 2000).
- Since 2001, the CERES-maize model, which is now known as the Crop Systems Model (CSM) of DSSAT is used to estimate maize yields for six to eight provinces.

Framework

Climate: Input

Short term predictions (in season)

Single season up-to-date and projected climate using an analogue model (Crop estimates)

Long term predictions (climate change)

Two historic climate data sources were used:

- National scale: Data from the University of KwaZulu-Natal. Based on quinary catchments (1950-1999) used 1980-1999.
- AgMERRA: Climate Forcing Datasets for Agricultural Modelling, NASA. Used 2000-2010.

Future climate data based on Global Circulation Models (GCMs) with no downscaling using mean and Daily Variability as the future creation method.

Data contained daily:

- minimum and maximum temperature,
- precipitation and
- solar radiation.

Historical Climate Conditions 1980-2010 CO₂ 360 ppm Future Climate Scenario's 2040-2070 CO2 571 ppm RCP 4.5 and 8.5

- GCM's: CCSM4, IPSL-CM5A-LR, IPSL-CM5A-MR, NorESM1-M and HadGEM2-AO.
- Mid-century (2040-2070) under RCP4.5 and 8.5. 14
- Baseline CO₂ level 361 ppm and future 571 ppm.

Average maize yield (kg/ha) per quinary catchment for each of the 5 climate scenarios for Q1 (RCP4.5), Q2 (RAP4) and Q3 (RAP4 & Adaptation) modelled using DSSAT.

How Sen2Agri products (LAI and NDVI) can assist in spatializing/estimating yields across South Africa.

Objective yield surveying (OYS)

Physical in-field measurements of crop yield parameters

Positive:

- Most accurate method
- Data collected can be used for "ground truthing"

Negative:

- Expensive
- Time consuming
- Limited number of locations can be sampled
- No forecasting only near end of season

Crop Modelling

Simulation of crop yields using simulation models

Positive:

- Once set up easy to execute (calibration)
- No spatial restrictions
- Most crops have some or other crop model
- Almost an unlimited number of simulations can be made
- "What if" scenarios can be analysed
- Climate forecast can be applied

Negative:

- Requires detailed soil information (i.e. depth, soil water holding capacity, organic C, etc.)
- Requires plant management information (planting date, fertiliser use, row width, plant population, surface residue, etc.)
- Requires crop phenology information (flowering date)
- Requires up-to date climate information
 - Minimum and maximum temperature
 - Rainfall
 - Solar radiation

Remote sensing

Using satellite images to calculate yield

Positive:

- Once set up easy to execute (calibration)
- No spatial restrictions

Negative:

- Cloud cover
- Training to identify the small fields and crops
- Require "ground thruthing" data for calibration
- Resolution of pixel and time interval between satellite orbits
- Forecasting?

How Sen2Agri products (LAI and NDVI) can assist in spatializing/estimating yields across South Africa.

Each of the methods have their own strengths and weaknesses.

Solution:

Combining the strengths of each method to strengthen the other:

- Objective yield survey for "ground thruthing" data for satellite imagery.
- Objective yield survey for information on crop management for crop model.
- Satellite imagery for information on planting date (planting densities) for crop model inputs.
- Satellite imagery for survey planning e.g. Objective yield survey.
- Satellite imagery to develop crop masks (crop type classification) for crop yield modelling.
- Crop models calculated LAI can be used to verify Sen2Agri products.
- Crop model yield estimates can be used to verify yields based on NDVI's.
- The Sen2Agri products are useful to **upscale** point based crop models and calculate yields at different scales.
- The Sen2Agri products can assist in **increasing** the yield **accuracy** of the current crop yield forecasting system.

Thank You

