GEAPS/GRAIN JOURNAL EDUCATIONAL WEBINAR SERIES

This webinar reviews an education session presented at GEAPS Exchange 2017

GEAPS EXCHANGE 2018 March 24-27, Denver, CO

Introduction

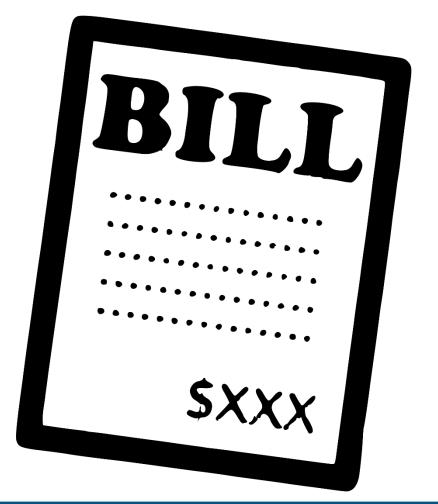
Education on Utility Bills & Power Concepts

Objectives

- Gain an understanding of industrial power
- Questions to ask your utility provider
- Identify ways to save money
- Real world examples

It's Time to Pay the Bills...

HIGH RATE ELECTRIC COMPANY 1234 AMPERAGE DR. SOMEWHERESVILLE, KS 55555


THE GRAIN ELEVATOR COMPANY 987 MAIN ST. SOMEWHERESVILLE, KS 55555

It's Time to Pay the Bills...

Let's Investigate

Power, Energy, & Demand

Power

- Instantaneous reading of electricity
- Measured in kilo-watts (kW)

Energy

- Accumulation of power over time
- Consumption
- Measured in kilo-watt hours (kWh)

Demand

- Average power your facility requires over 15 minutes
- (Average Speed Driven over 15 minute time period)

Contact your Utility Provider

Is there a business size classification, how am I classified, and what is the criteria?

Is there a penalty or adjustment for low power factor?

How is demand calculated?

1. Business Size

Is there a business size classification, how am I classified, and what is the criteria?

Is there a penalty or adjustment for low power factor?

How is demand calculated?

Business Size Classification

- Small General (< 200 kW)
 - 220 kW Monthly Average or 300 kW
- Medium General (200 1,000 kW)
 - 1,100 kW Monthly Average or 1,500 kW
- Large General (1,000 kW 25,000 kW)
 - 25,000 kW moved to Industrial & Large Power

Tariff Information:

https://www.westarenergy.com/rates-and-regulations

Small General Service

Basic Service Fee\$22.50

Demand

For the months of June through September:

\$8.47 per kW for all kW more than 5 kW

For the months of October through May:

\$4.38 per kW for more than 5 kW

Energy Use

\$0.069699 per kWh for the first 1,200 kWh \$0.050723 per kWh for all additional kWh

Plus all applicable adjustments and surcharges.

Medium General Service

The Medium General Service – commercial and industrial customers with electrical demand greater than 200 kW are eligible to be served under this tariff.

Basic Service Fee \$100.00

Demand

\$15.615204 per kW

Energy Use

For the months of June through September:

\$0.019261 per kWh

For the months of October through May:

\$0.014627 per kWh

Plus all applicable adjustments and surcharges.

Medium Demand Charge

MEDIUM GENERAL SERVICE

MINIMUM MONTHLY BILL

The greater of the Basic Service Fee plus the Demand Charge for 200 kW of Billing Demand, or the minimum specified in the electric Service Agreement, plus all applicable adjustments and surcharges.

BILLING DEMAND

Billing Demand shall be the greatest of:

200 kW, or

Actual Demand

The average kW load supplied during the 15 minute period of maximum use during the month, adjusted for excessive lagging power factor, as described below, or

Ratchet Clause

50 percent of the highest Billing Demand, as adjusted for power factor, established during the previous billing months of June, July, August or September, within the most recent 11 months, or

The minimum demand specified in the Electric Service Agreement.

Large General Service

This rate applies to customers with electrical demand of 1,000 kW to 25,000 kw.

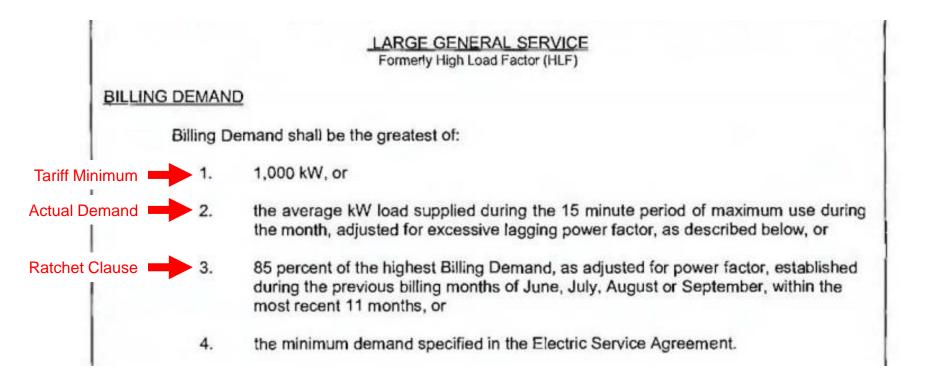
Basic Service Fee.....\$250.00

Demand

\$14.103727 per kW for service taken at primary voltage

Energy Use

\$0.015390 per kWh for all kWh


Plus all applicable adjustments and surcharges.

Large Demand Charge

Tariff Example

						Reclassified					
	2016 May	2016 June	2016 July	2016 Aug	2016 Sept	2016 Oct	2016 Nov	2016 Dec	2017 Jan	2017 Feb	2017 Mar
1) Tariff Minimum	200	200	200	200	200	1000	1000	1000	1000	1000	1000
Actual Demand	720	1390	1300	1300	1585	1390	1630	1390	1200	1150	1300
2) Adjusted Demand	800	1575	1400	1325	1635	1435	1640	1390	1200	1150	1310
Summer Peak Demand	944	1574	1574	1574	1635	1635	1635	1635	1635	1635	1635
3) 50%/85% of Summer Peak	472	787	787	787	818	1390	1390	1390	1390	1390	1390
Peak Demand month	Jun-15	Jun-16	Jun-16	Jun-16	Sep-16	Sep-16	Sep-16	Sep-16	Sep-16	Sep-16	Sep-16
Billing Demand	800	1575	1400	1325	1635	1435	1640	1390	1390	1390	1390

Business Size Comparison

	SMALL	MEDIUM	LARGE
Criteria	< 200 kW	< 1,000 kW	< 25,000 kW
Basic Fee	\$ 22.50	\$ 100.00	\$ 250.00
Demand	Summer: \$ 8.47 Other: \$ 4.38	\$ 15.61	\$14.10
Usage	First 1200: \$ 0.069 After: \$ 0.0507	Summer: \$0.0192 Other: \$ 0.0146	Anytime: \$ 0.0153
Tariff Min	None	200 kW	1,000 kW
Ratchet	None	50% Highest Summer Demand	85% Highest Summer Demand

Business Size Example

Demand: 299 kW; Usage 33,000 kWh; February

	SMALL	MEDIUM
Service Fee	\$ 22.50	\$ 100.00
Demand	Oct – May: \$ 4.38 = \$4.38 X 299 kW = \$1,309.62	\$ 15.61 = \$15.61 X 299 kW = \$4,667.39
Usage	1200 kWH * \$0.06969 31,800 kWH * \$0.0507 = \$2,448.54	33,000 kWH * \$ 0.0146 = \$481.80
Total	\$3,780.66	\$5,249.19

Rate Schedules for Kansas and Missouri.

Missouri Detailed Tariffs

Kansas Detailed Tariffs

Rate Schedule Title	Schedule No.	Rate Schedule Title	Schedule No.
Table of Contents	TOC-1	Table of Contents	
Tax Adjustment	1	Table of Contents	TOC-1
Additional Equipment Rental Charge	2	Residential	1
Reserved for Future Use	3	Residential Service	11
Reserved for Future Use	4	Residential Other Use	12
Residential Service	5	Residential Time of Day Service	16
Residential Other Use	6	Commercial and Industrial	
Reserved for Future Use	7	Small General Service	31
Residential Time of Day Service (Frozen)	8	Small General Service - Space Heating	44
Small General Service	9	Medium General Service	32
Medium General Service	10	Medium General Service - Space	45
Large General Service	11	Heating	
Reserved for Future Use	12	Large General Service	33

http://www.kcpl.com/my-bill/for-business/rate-information-for-business-customers/detailed-tariffs

2. Power Factor

Is there a business size classification, how am I classified, and what is the criteria?

Is there a penalty or adjustment for low power factor?

How is demand calculated?

Power Bill – Power Factor

What is power factor?

Warning...Math Ahead!!!

Power Equation

For 3 Phase AC Motors

Watts = Volts X Amps X 1.73 X PF

Example:

- 480VAC
- 60 Amps
- Power Factor: 75%

Power Equation

Watts = Volts X Amps X 1.73 X PF

Watts = 480 V X 60 Amps X 1.73 X 75%

Watts = 37.4 kW

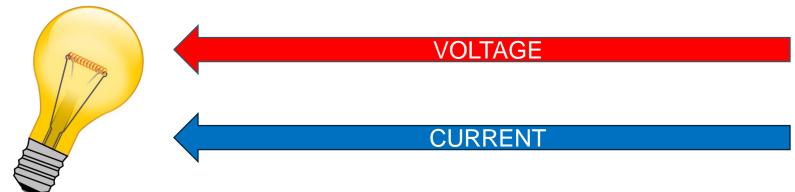
So What is Power Factor?

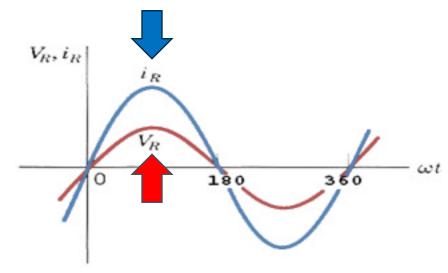
3 Components of Electrical Loads

RESISTIVE

INDUCTIVE

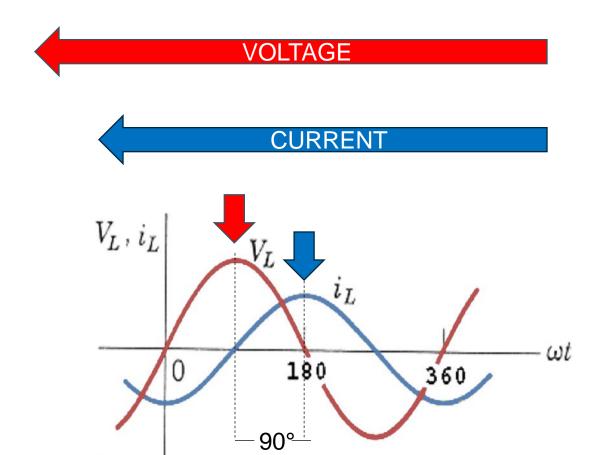
CAPACITIVE





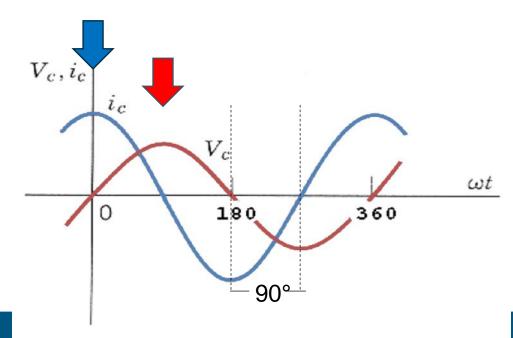
Purely Resistive Loads

100% Power Factor
"In Phase"

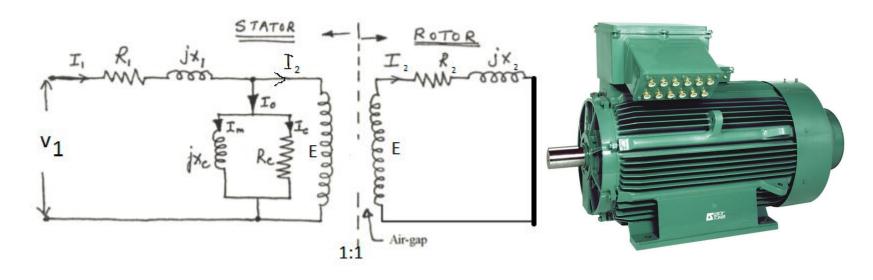


Purely Inductive Loads

0% Power Factor LAGGING


Purely Capacitive Loads

VOLTAGE

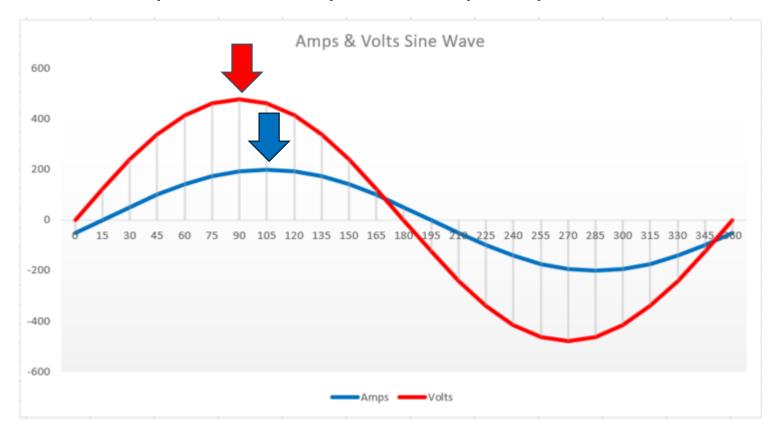

CURRENT

0% Power Factor LEADING

Motor Loads

Induction motor is a combination of resistive and inductive elements.

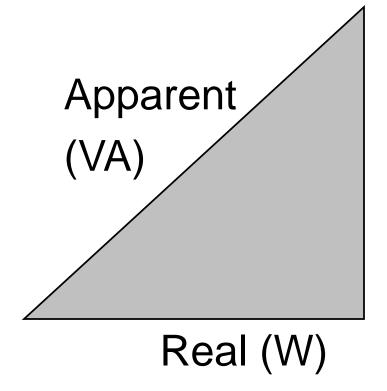
Power Factor Calculations


 Cosine of the phase shift difference between the voltage and current

Watts / Volt-Amps (ratio of Real Power to Apparent Power)

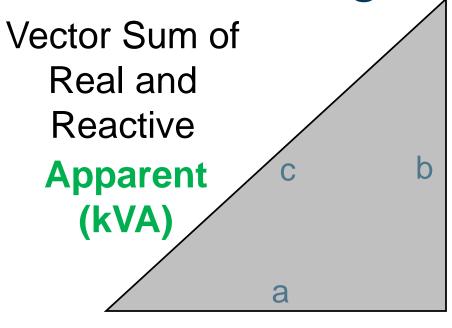
Power Factor Calculation

 $PF = cos(105^{\circ}-90^{\circ}) = cos(15^{\circ}) = 96.5\%$



The Power Triangle

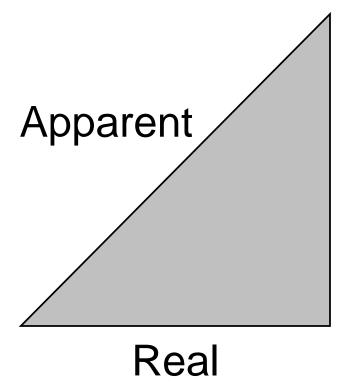
3 Elements


- Real Power
- Reactive Power
- Apparent Power

Reactive (VAR)

The Power Triangle

Inductive & Capacitive Elements


Reactive (kVAR)

Resistive Element Real (kW)

$$a^2 + b^2 = c^2$$

The Power Triangle

Reactive

Power Triangle Calculations

- Power = Volts X Amps X $\sqrt{3}$ X PF
- Power = 480 X 170 X $\sqrt{3}$ X 71%
- Power = 100 kW

The Power Triangle Example

Analogy

Why is this Important?

High Power Factor Saves You Money

- Avoid penalty / adjustments on bill
- Utility provider doesn't have to upgrade infrastructure

Power Bill – Power Factor

Utility Companies Usually Have a Target Threshold

- May be a direct penalty if PF is below threshold
- Demand charge may be recalculated

Example:

- Target PF is 90%, Demand = 521, PF=85%
- Demand X 90%/PF
- 521 kW X 90% / 85%
- 521 kW X 1.06 = 552 kW
- Additional Cost = (552 kW X \$16) (521 kW X \$16)
- Additional Cost = \$8,832 \$8,336 = \$496
- = \$6,000 / yr

Power Factor Correction

Real World Example:

Improve Average Power Factor from 80% to 90%

Average Monthly Demand is 1,822 kW

PF Penalty: \$4,058/month

Cost: \$85,000 to install

Auto-Capacitor Bank

ROI Payback: 1.75 Years

How Can I Improve Power Factor?

Minimize Equipment Running Idle

Idle Leg

Utilized Leg

Parameter Name	Value			
Output Frequency	60.04			
Commanded SpdRef	60.00			
Mtr Vel Fdbk	60.00			
Commanded Trq	0.00			
Torque Cur Fdbk	10.31			
Flux Cur Fdbk	42.10			
Output Current	43.22			
Output Voltage	451.83			
Output Power	8.24			
Output Powr Fctr	0.23			
	AND REAL PROPERTY.			

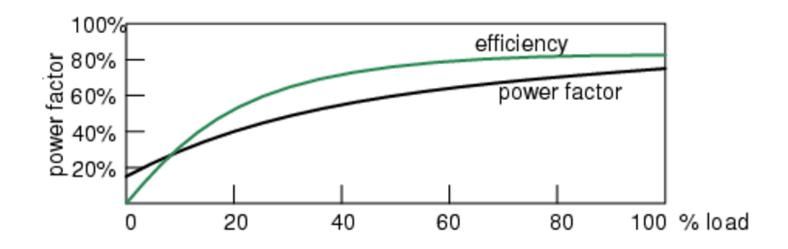
Parameter Name	Value			
Output Frequency	60.22			
Commanded SpdRef	59.88			
Mtr Vel Fdbk	59.88			
Commanded Trq	0.00			
Torque Cur Fdbk	70.68			
Flux Cur Fdbk	59.04			
Output Current	92.08			
Output Voltage	458.67			
Output Power	56.69			
Output Powr Fctr	0.77			

Non-Utilized Equipment Cost

Watts = 480 V X 60 Amps X 1.73 X 23%

Watts = 11.5 kW

11.5 kW X \$0.10/ kWh


=\$1.15 / hr

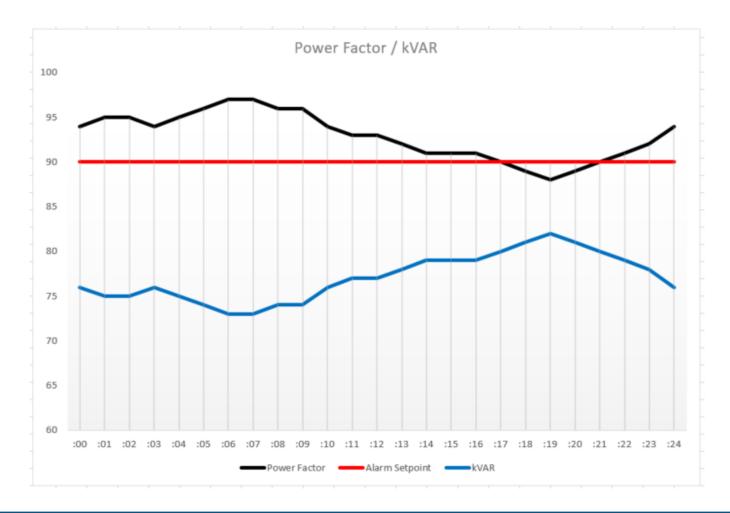
How Can I Improve Power Factor?

Be Careful about Over-Sized Motors

Optimal Power Factor Occurs at 100% FLA

Variable Frequency Drives

- Improve Power Factor
 - Isolates motor from utility
- Added Benefit of Less Power at Reduced Speeds
- Easier on Equipment
 - Start/Stop More Often



Measuring Power Factor

Software to Monitor Power Factor

3. Demand

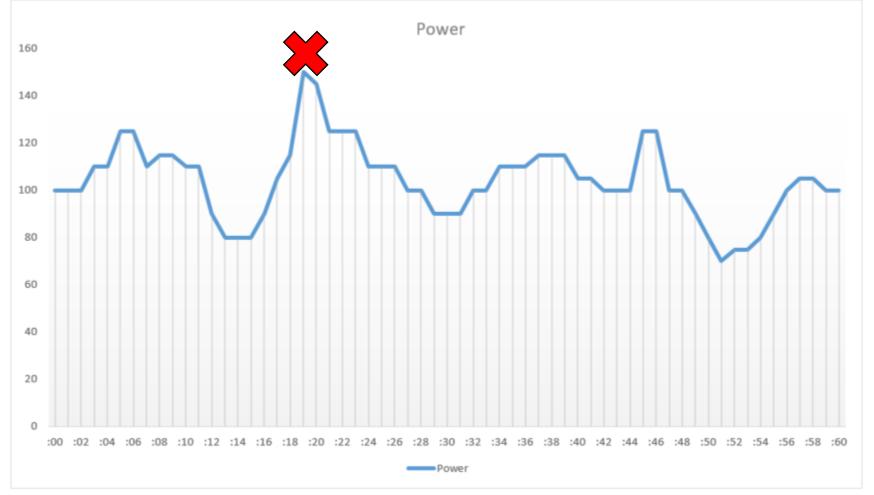
Is there a business size classification, how am I classified, and what is the criteria?

Is there a penalty or adjustment for low power factor?

How is demand calculated?

Power Bill - Demand

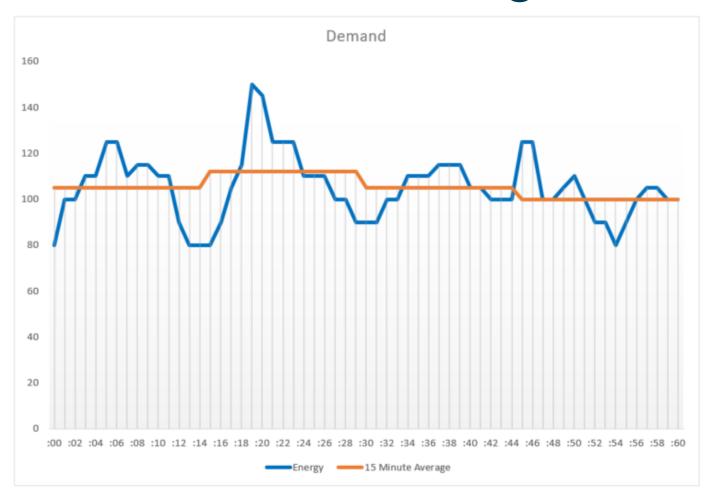
Demand


- Average rate of energy use over time
- Generally, power is sampled every 1 second and averaged over a 15-minute interval

Myth:

- Demand is the instantaneous power peak
- Don't confuse Peak Power & Peak Demand

This is not your Demand Charge...


Demand Types

Fixed Interval

- Typically 15 minutes (30 minutes)
 - :00 :15, :15 :30, :30 :45, :45 :00
 - 2,880 intervals in 30 day month
- Demand averaged across 15-minutes
- Billed for largest 15-minute interval for month

15 Minute Average

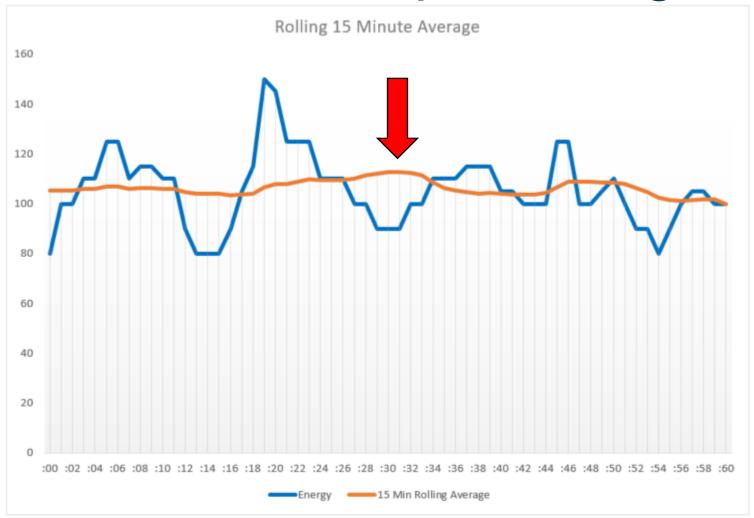
Demand Example

Sampled every 10 seconds

 The first minute average was higher even though the peak occurred in minute two.

First Minute	:00	:10	:20	:30	:40	:50	Average
	275	285	300	290	300	275	287.5
Second Minute	:00	:10	:20	:30	:40	:50	Average
	200	205	500	500	0	0	234.2

Demand Types


Rolling Interval

- Typically 15-minute windows
 - :00 :15, :01 :16, :02 :17 ... :59 :14
 - 43,200 intervals in 30 day month
- Demand averaged across 15-minutes
- Billed for largest 15-minute interval in month

Demand Graph Rolling

It only takes one...

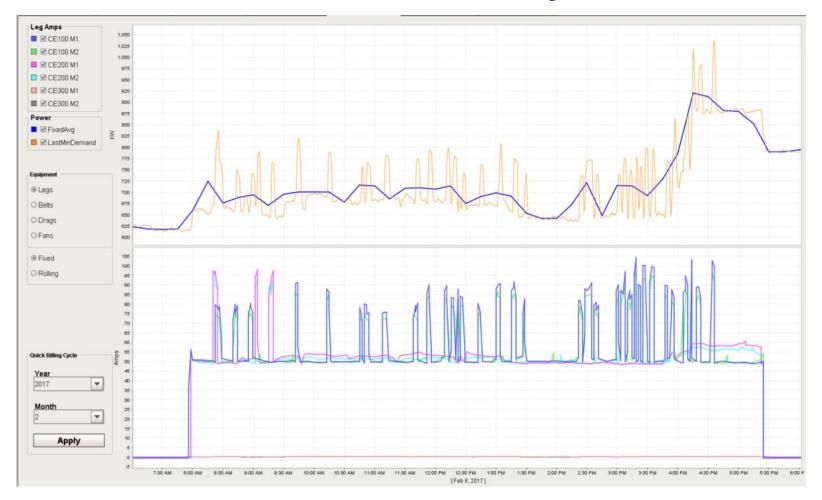
One 15-minute window can have a significant impact on your monthly bill

Real World Example

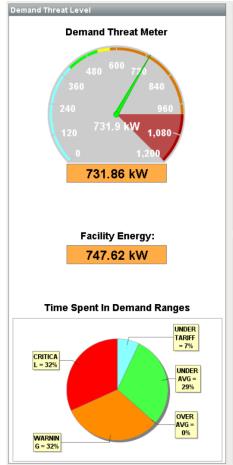
Demand Example

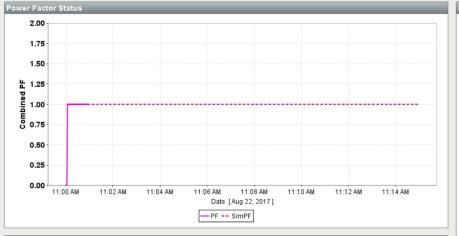
JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JULY
469	406	306	482	600	643.4	795	639.7	567.5	459	473.6	576	551.7

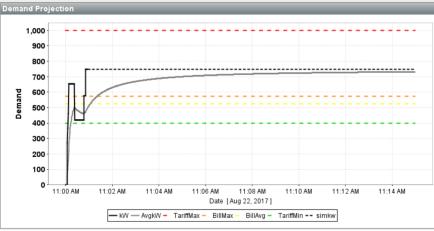
Monthly Average: 536 kW


Cut \$6,500 by limiting demand Nov-Feb to average

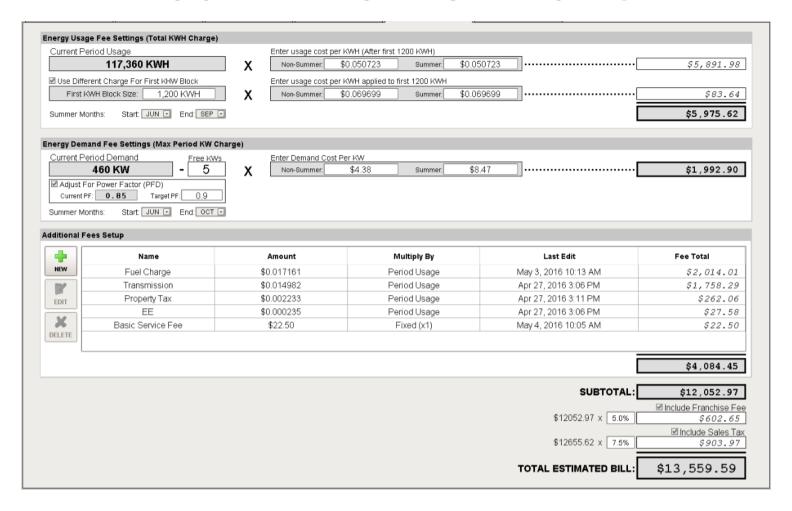
What can we do about this? ENERGY MANAGEMENT




Historical Analysis



Facility Dashboard



Running Equipment Summary					
RAIL LEG 1	kW:19				
RAIL LEG 2	kW: 19				
REC LEG 1	kW:95				
REC LEG 2	kW:95				
REC LEG 3	kW:95				
REC LEG 4	kW:95				
BIN 1 FANS (10x60HP)					
RECLAIM BELT	kW:0				
REC DRAG 1	kW:0				
REC DRAG 2	kW:0				
REC DRAG 3	kW:0				
REC DRAG 4	kW:0				
TOP DRAG 1	kW:0				
TOP DRAG 2	kW:0				
TOP DRAG 3	kW:0				
TOP DRAG 4	kW:0				
BIN 1 AUGER	kW:0				
HYD PUMP	kW:0				
	Equipment Runni				

Real Time Estimation

Energy Management Expense

- Single Power Monitor Hardware & CTs
- Electrical Installation
- Software
- \$16,000 \$40,000

Incentives

http://literature.rockwellautomation.com/idc/groups/multi_media/documents/multimedia/files/virtualbrochure/pems/index.html

Kansas Energy Office Kansas Corporation Commission 1500 SW Arrowhead Road Topeka, KS 66604

785.271.3170 fax: 785.271.3268

www.kcc.ks.gov/energy/

Links:

<u>Kansas Corporation Commission - Energy Division</u>
<u>Federal Energy Management Program</u>

Database of State Incentives/Policies for Renewables & Efficiency

Conclusion

Understand your energy bill structure

Do an audit of your energy bills

- Look for low power factor
- Look for high demand months
- Look at your Business size classification

Actively monitor your power with power monitors and software

Thank You

Kasa Controls & Automation

Questions

References

- http://www04.abb.com/GLOBAL/seitp/seitp202.nsf/viewunid/57D1C4FC9FB087F885256D420065AF11/\$file/Power+Factor+Improved+Via+AC+Drives+-+Release.pdf
- https://www.westarenergy.com/Portals/0/Resources/Documents/Tariffs/Commercial_Rates_2016.pdf
- https://en.wikipedia.org/wiki/Volt-ampere_reactive
- https://www.quora.com/What-is-the-use-of-the-reactive-power-when-it-is-only-real-power-that-is-utilized-for-useful-purposes-by-the-load
- http://literature.rockwellautomation.com/idc/groups/multi_media/documents/multimedia/files/virtualbrochure/pems/index.html
- www.kcc.ks.gov/energy/
- https://www.nde-ed.org/EducationResources/CommunityCollege/EddyCurrents/Physics/circuitsphase.htm
- http://www.allaboutcircuits.com/textbook/alternating-current/chpt-13/tesla-polyphase-induction-motors/
- https://en.wikipedia.org/wiki/Alternating_current
- https://en.wikipedia.org/wiki/Direct_current
- https://www.nde-ed.org/EducationResources/CommunityCollege/EddyCurrents/Physics/circuitsphase.htm
- www.rockwellautomation.com

Image References

- http://blog.clarity.fm/5-ways-to-offer-awesome-content-without-pulling-your-hair-out/
- https://openclipart.org/detail/204749/pay-your-bill-icon
- https://sustituciondepuestosclaves.wikispaces.com/Metodo+de+Sustitucion+de+Puestos+Claves
- http://www.mylila.org/?catid=0&id=381
- http://instituteforenergyresearch.org/electricity-transmission/
- http://free-illustrations.gatag.net/page/739
- http://commons.uncyclomedia.org/wiki/Image:Grain_elevator_ganson.svg
- https://commons.wikimedia.org/wiki/File:Condensatorenbatterij.jpg
- http://www.movimento5stelle.it/parlamento/iStock_000009513263_Large.jpg
- http://msgamezwiki.wikispaces.com/515+Case+Study-+Netbooks
- http://3.bp.blogspot.com/_ziidT25oGY4/TAn79dyseVI/AAAAAAAAAAAAAAC8/vx8WIERQD-o/s1600/question.jpg
- https://commons.wikimedia.org/wiki/File:Ac-elektromotor-robuster-asynchronmotor.jpg
- http://efc.web.unc.edu/2016/06/09/financing-energy-efficiency-nc/
- https://en.wikipedia.org/wiki/Odometer#/media/File:Jeep_Odometer.jpg

Lorem Ipsum

- Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry's standard dummy text ever since the 1500s.
- Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry's standard dummy text ever since the 1500s.
- Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry's standard dummy text ever since the 1500s.

